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1. Introduction

One of the important factors that influence the dynamic stability and the performance of
mechanisms is the joint clearance. In the last years, many researchers have studied the effects of
the clearance on the motion of mechanical systems. Farahanchi and Shaw [1] considered the
model of a planar, rigid-link mechanism with clearance at the slider joint. They observed that the
response of the system appears to be chaotic, although periodic motion become more common as
dissipation effects are increased. Abarbanel [2–4] developed dynamic tools for analyzing observed
chaotic data. Non-linear dynamic tools were presented by Nayfeh and Balachadran [5]. Deck and
Dubowski [6] studied the problems encountered in predicting the dynamic response of machines
with clearance connections. Recent research has contributed to the development of simulation
methods for specific multibody systems. Gilmore and Cipra [7] discussed a simulation method for
planar dynamical mechanical systems with changing topologies. The information provided by the
rigid bodies’ boundary descriptions was used to automatically predict and detect impacts. Conti
et al. [8] described a unified method to predict the contact changes due to kinematics. Contact and
friction constraints were used by Pfeiffer [9] to study the stick–slip phenomena. Brach [10]
considered only single collisions and formulates the impact equations using Newton’s law. Jean
and Moreau [11] reformulated Newton’s law in an unilateral manner for multiple impacts with
friction. In this work, the models of rigid-body impacts described by Marghitu [12,13] were used.

In the present paper, the dynamic behavior of a planar, rigid-link mechanism with a sliding
joint clearance is investigated. Periodic motion is observed for the system with no clearance. The
response of the system with clearance is chaotic at relatively high crank speeds and low values of
the coefficient of restitution.
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2. Mathematical model

In this section, the model of the mechanism is described and the equations of motion are
derived. The basic assumptions are provided first. Next, differential equations which govern the
dynamics of the system are presented.

2.1. Basic assumptions

In order to study the effects of clearances on the motion of a connecting rod in a slider crank
mechanism, a simplified model is used, shown in Fig. 1. The following basic assumptions are
considered: (1) All components are rigid. (2) All motions occur in a fixed plane. (3) A motor with a
variable torque is used to crank the mechanism. (4) The clearances for the slider are symmetrically
placed about the nominal slider path, that is, without clearance, and have a fixed magnitude. (5)
The impacts between the connecting rod and slider are instantaneous and are modelled using a
constant coefficient of restitution, a coefficient of friction, and a moment coefficient.

2.2. Equations of motion

Several methods are used to derive the equations of motion for the mechanism. It is assumed
that during the impacts the system position does not change, because the impact time is very
small. It is also assumed that the effect of finite forces is neglected during the impact. Formulation
of rigid-body collision problems are based on two physical laws, Coulomb’s law of dry friction
and balance of momentum. To solve the impact equations, additional relations are obtained using
a coefficient of restitution and a coefficient of friction.

Fig. 1 shows a planar slider joint where the backlash has been made very large in order to make
it clearly visible. Fig. 2 illustrates a possible geometry for the slider joint with clearance and four
possible cases consisting of the following: Case (a): no contact (Fig. 2(a)). Case (b): contact or
impact on a single point (Fig. 2(b)). Case (c): contact or impact on two opposed points (Fig. 2(c)).
Case (d): contact or impact on two points on the same side (Fig. 2(d)).
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Fig. 1. Simplified model of the rigid-link mechanism with rotating slider joint and clearance.
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The conditions for switching from one case to a different one depend on the positions of the
links and the reaction forces at the contact points.

Impacts can occur when the joint is in either case (b), (c) or (d). The impact conditions depend
on the relative linear velocities of the contact points. For example, in case (b), one can write the
following impact condition:

vn
P2

� vn
P3
E0; ð1Þ

where vn
P2

and vn
P3

are the normal velocities to the collision surface of the contact point P between
links 2 and 3.

The contact conditions also depend on the reaction forces between the links at the contact
points. For example, in case (b), the force condition can be written as

Nn
P2

�Nn
P3
E0; ð2Þ

where Nn
P2

and Nn
P3

are the reaction forces between links 2 and 3 at the contact point P:
The motion of the contact point during the impact can be described by one of the following two

cases:

1. The contact point is slipping along surface while interacting with it in the normal direction.
Since contact is maintained and slipping occurs, the normal and tangential components of the
contact forces can be represented for dry friction as Ft ¼ �mkFn:

2. The contact point is not slipping along but interacting with it in the normal direction. The
tangential velocity vt of the contact point is vt ¼ 0 subject to jFt=Fnjpms:

The simulation algorithm for the mechanism automatically determines when a change in the
topology occurs and reformulate the equations of motion to reflect the changes in the system
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Fig. 2. Geometry of the slider joint with clearance for (a) no contact, (b) contact or impact on a single point, (c) contact

or impact on two points on the same side, (d) contact or impact on two opposed points.
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topology. The equations of motion depend on the contact and impact conditions. Sets of non-
linear equations are solved for contact and sets of linear equations are solved for impact.

Next, the equations of motion for cases (a) and (b) are derived.

2.2.1. No contact

In this section, the mechanism with two degrees of freedom is considered (Fig. 3(a)). One can
choose the generalized co-ordinates q1 ¼ y1 and q2 ¼ y2: The equation of motion is derived using
Lagrange’s equations

d

dt

@T

@ ’qi

� �
�
@T

@qi

¼ Qi; i ¼ 1; 2; ð3Þ

where T is the kinetic energy, qi is the generalized co-ordinate, and Qi is the generalized force
associated with the co-ordinate qi:

The kinetic energy T1 for link 1 is

T1 ¼ 1
2

m1vG1
� vG1

þ 1
2

IG1
x1 � x1; ð4Þ

where x1 ¼ ’q1k:
The kinetic energy T2 for link 2 is

T2 ¼ 1
2

m2vG2
� vG2

þ 1
2
IG2

x2 � x2; ð5Þ

where x2 ¼ ’q2k:
The total kinetic energy T is

T ¼ T1 þ T2: ð6Þ
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Fig. 3. Geometry of the mechanism for (a) no contact, (b) contact or impact on a single point.
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One can write the generalized force Q1 as

Q1 ¼ �ð1
2

m1 þ m2ÞL1g cos q1: ð7Þ

One can write the generalized force Q2 as

Q2 ¼ �1
2

m2L2g cos q2: ð8Þ

From Eqs. (3), (6), and (7), one can write

m1L2
1

4
þ m2L2

1 þ IG2

� �
.q1 þ 1

2
m2L1L2½ .q2 cosðq2 � q1Þ

� ’q2
2 sinðq2 � q1Þ	 ¼ �L1

1
2

m1 þ m2

� �
g cos q1: ð9Þ

From Eqs. (3), (6), and (8), one can write

m2L2
2

4
þ IG2

� �
.q2 þ 1

2
m2L1L2 .q1 cosðq2 � q1Þ þ ’q2

1 sinðq2 � q1Þ
� �

¼ �1
2

L2m2g cos q2: ð10Þ

Eqs. (9) and (10) are used and the equation of motion is solved.

2.2.2. Contact on a single point
In this case, the mechanism has two degrees of freedom (Fig. 3(b)). One can choose the

generalized co-ordinates q1 ¼ y1 and q2 ¼ y2: Kane’s equations are used and the equation of
motion is derived.

The total kinetic energy T is

T ¼ T1 þ T2 þ T3: ð11Þ

One can find the position vector rP of the contact point PðxP; yPÞ solving the system of
equations

tan q2 ¼
yB � yP

xB � xP

; ðxC � xPÞ
2 þ ðyC � yPÞ

2 ¼ r2: ð12Þ

The angular velocity and acceleration vectors x3 and a3 of link 3 are

x3 ¼ ’y3k; a3 ¼ .y3k; ð13Þ

where y3 ¼ arctan yP=ðxP � ACÞ:
One can choose the generalized speeds u1 and u2

u1 ¼ ’q1; u2 ¼ ’q2: ð14Þ

In order to take in consideration the reaction force NP between links 2 and 3 acting at the
point P one can introduce a new generalized speed u3 in the expression of the relative
velocity vP23

:

vP23
¼ vP2

� vP3
þ u3e2n; ð15Þ

where vP2
¼ vG2

þ x2 
 ðrP � rG2
Þ and vP3

¼ x3 
 ðrP � rCÞ:
The reaction force NP of link 3 on link 2 is

NP ¼ NPe2n: ð16Þ
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The friction force FfP
that acts on link 2 at the point P is

FfP
¼ �

vP

jvPj
mkN: ð17Þ

The generalized forces Qj; for j ¼ 1; 2; 3; can be computed as

Qj ¼
X3

i¼1

@vGi

@uj

�Gi þ
@vP2

@uj

� ðNP þ FfP
Þ þ

@vP3

@uj

� ð�NP � FfP
Þ þ

@x1

@uj

�Mm: ð18Þ

The generalized inertia forces Fn
j ; for j ¼ 1; 2; 3; can be written as

Fn

j ¼
X3

i¼1

@vGi

@uj

� ð�miaGi
Þ þ

X3

i¼1

@xi

@uj

� ð�IGi
aiÞ: ð19Þ

One can write three Kane equations associated with the generalized speeds uj; for j ¼ 1; 2; 3:

Fn

j þ Qj ¼ 0: ð20Þ

From Eqs. (14) and (20) one can find the equation of motion for the mechanism and the
reaction force N:

2.2.3. Impact on a single point
Next, the mechanism with three generalized co-ordinates is considered (Fig. 3(b)). One can

choose q3 ¼ y3 as the third generalized co-ordinate.
To derive the equation of motion for the impact, an integrated form of Lagrange’s equations is

used:

@T

@ ’qi

� �
ts

�
@T

@ ’qi

� �
ta

¼ Pi; i ¼ 1; 2; 3; ð21Þ

where T is the kinetic energy, ’qi is the velocity associated with the generalized co-ordinate qi; Pi is
the generalized impulse associated with the co-ordinate qi; and ta; ts are the times of approach and
separation for the impact.

The kinetic energy T3 for link 3 is

T3 ¼ 1
2

IG3
x3 � x3 ¼ 1

2
IG3

’q2
3; ð22Þ

where x3 ¼ ’q3k:
The total kinetic energy T is

T ¼ T1 þ T2 þ T3: ð23Þ

One can write the left-hand sides of Eq. (21) as

@T

@ ’qi

� �
ts

�
@T

@ ’qi

� �
ta

¼
@T

@ ’qi

�
’qi¼Oi�oi

; i ¼ 1; 2; 3; ð24Þ

where oi ¼ oiðtaÞ ¼ ’qiðtaÞ and Oi ¼ oiðtsÞ ¼ ’qiðtsÞ are the angular velocities associated with the
co-ordinates qi before and after the impact.
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One can express the position vector rP of the impact point PðxP; yPÞ solving the system of
equations:

tan q2 ¼
yB � yP

xB � xP

; tan q3 ¼
yC � yP

xC � xP

: ð25Þ

The velocity vector of the impact point P is vP ¼ ’rP:
The generalized impulses (right-hand sides of Eq. (21)) can be written as

Pi ¼
@vP

@ ’qi

� ðFne2n þ Fte2tÞ; i ¼ 1; 2; 3; ð26Þ

where e2n ¼ �sin q2i þ cos q2J and e2t ¼ cos q2i þ sin q2J are the unit vectors normal and
tangential to the contact surface, and Fn;Ft are the normal and the tangential components of the
impulse momentum F :

For link 1, one can write

m1L2
1

4
þ m2L2

1 þ IG1

� �
ðO1 � o1Þ þ 1

2
m2L1L2ðO2 � o2Þ

cos ðq2 � q1Þ ¼ P1: ð27Þ

For link 2 one can write

m2L2
2

4
þ IG2

� �
ðO2 � o2Þ þ 1

2 m2L1L2ðO1 � o1Þ cosðq2 � q1Þ ¼ P2: ð28Þ

For link 3 one can write

IG3
ðO3 � o3Þ ¼ P3: ð29Þ

The velocities vP2
and vP3

of the contact points P2 and P3 located on links 2 and 3 can be
expressed as

vP2
¼ vB þ ’q2k
 BP; vP3

¼ ’q3k
 CP; ð30Þ

where vB ¼ ’rB is the linear velocity of the joint B; and CP ¼ rP � ACi:
One can write the velocity of approach va and separation vs for the impact as

va ¼ vP2
ðtaÞ � vP3

ðtaÞ; vs ¼ vP2
ðtsÞ � vP3

ðtsÞ: ð31Þ

From the definition of the coefficient of restitution e; one can write

e ¼ �
vsn

van

; ð32Þ

where van ¼ va � e2n and vsn ¼ vs � e2n are the projections of the linear velocities of approach and
separation va and vs on the normal direction e2n:

The tangential component vst of the velocity of separation vector vs can be expressed as

vst ¼ ðvs � e2tÞe2t: ð33Þ

There are two cases of impact with friction at the point P:
(1) No slipping: The following condition must be satisfied:

Ft

Fn

				
				oms: ð34Þ
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In this case, the velocity vector vst is zero:

vst ¼ 0: ð35Þ

From Eqs. (27)–(29), (32), and (35) one can find the unknown variables Fn; Ft; and Oi; i ¼
1; 2; 3:

(2) Slipping: The following condition must be satisfied:

Ft

Fn

				
				 > ms: ð36Þ

In this case, the following relation can be written as

Fte2n ¼ �
vst

jvstj
mk Fnj j: ð37Þ

From Eqs. (27)–(29), (32), and (37), one can find the unknown variables Fn; Ft; and Oi; i ¼
1; 2; 3:

For cases (c) and (d) one can use similar assumptions and derive the equations of motion using
the same methods.

3. Lyapunov exponents

Data obtained from a deterministic system can be classified as either periodic or non-periodic
[5]. Non-periodic data may correspond to a quasiperiodic, transient or chaotic motion. The term
chaotic is assigned to those problems for which there are no random or unpredictable variable or
parameters, but their time histories have a sensitive dependence on initial conditions. Thus, the
motion is chaotic in the sense of not being predictable when there is a small uncertainty in the
initial conditions. The chaotic motion is characterized by a continuous, broadband Fourier
spectrum and is possible only in a three-or-more dimensional non-linear system of differential
equations.

The Lyapunov exponents provide a measure of the sensitivity of the system to its initial
conditions. They exhibit the average rate at which nearby trajectories converge or diverge in the
state space and are used to distinguish the chaotic and non-chaotic behaviors. Periodic systems
show only negative and zero exponents which indicate the convergence to a predictable motion. A
positive exponent means that two close trajectories that start from almost identical conditions will
move apart at an exponential rate as the time evolves. This rate, and hence the predictability of the
system, is described by the largest of the Lyapunov exponents. Therefore, one needs to determine
the sign of the Lyapunov exponents in order to characterize the behavior of the dynamic system.

4. Numerical results

In this section, results from computer simulations are presented using analysis tools. In Fig. 1
the mechanism with slider clearance is shown. The masses of the links are m1 ¼ 0:008 kg; m2 ¼
0:038 kg; and m3 ¼ 0:015 kg: The mass moments of inertia for the links are IG1

¼ 6:733

10�6 kg m3; IG2

¼ 6:925
 10�4 kg m3; and IG3
¼ 2:220
 10�6 kg m3: The lengths of links are
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L1 ¼ 0:1 m; L2 ¼ 0:47 m; and L3 ¼ 0:047 m: The nominal width of the slider (link 3) is l3 ¼
0:025 m: The distance between the pin joints A and C is AC ¼ 0:28 m: The kinetic coefficient of
friction mk ¼ 0:3; the static coefficient of friction ms ¼ 0:35; and the coefficient of restitution
e ¼ 0:4 are used. These values are constant through the investigation. The analysis is performed
for different values of the clearance c; varying the nominal angular velocity of link 1, o10: The
torque of the motor acting at joint A is chosen as Mm ¼ M0ð1� o1=o10Þ; where M0 ¼ 1 N m:

Fig. 4(a) shows the vertical trajectory for the center of mass G2 of link 2, yG2
; in the state space

for zero clearance ðc ¼ 0 mmÞ: On the three-dimensional graphic, the co-ordinate of the position
yG2

ðtÞ is plotted along the co-ordinate yG2
ðt þ TÞ and the co-ordinate yG2

ðt þ 2TÞ; where T is the
time lag. The trajectory is a closed loop and the motion is periodic. In this case, the largest
Lyapunov exponent is zero (ll ¼ 0) and all the other exponents are less than zero, that is, a
periodic orbit.

Fig. 4(b) shows the vertical trajectory yG2
in the state space for non-zero clearance c ¼ 1 mm;

and o10 ¼ 200 r:p:m: The curve is not closed, that is, an unstable orbit. The largest Lyapunov
exponent is positive ðll ¼ 31:24Þ; denoting the chaotic behavior of the system.

Next, the largest Lyapunov exponent is computed for a set of simulation results for different
values of the angular velocity o10: Fig. 5 shows the results for the clearances: c ¼ 0:5 mm
(Fig. 5(a)), c ¼ 1 mm (Fig. 5(b)), and c ¼ 1:5 mm (Fig. 5(c)). For constant clearance ðc ¼
constantÞ and for larger values of the angular velocity o10 one can obtain larger values of the
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Fig. 4. Trajectory of the vertical co-ordinate yG2
in the state space for (a) zero clearance ðc ¼ 0 mmÞ; (b) non-zero

clearance ðc ¼ 1 mmÞ:
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Lyapunov exponent ll : For c ¼ 0:5 mm; o10 ¼ 50 r:p:m; it results ll ¼ 20:54; and for c ¼ 0:5 mm;
o10 ¼ 200 r:p:m; it results ll ¼ 26:55: Also, for constant angular velocity ðo10 ¼ constantÞ and
larger values of the clearance c one can obtain larger values of the Lyapunov exponent ll : For
o10 ¼ 100 r:p:m; c ¼ 0:5 mm; it results ll ¼ 24:66; and for o10 ¼ 100 r:p:m; c ¼ 1:5 mm; it results
in ll ¼ 28:90:

Appendix A. Nomenclature

Li length of link i ði ¼ 1; 2; 3Þ
li width of link i

c length of the clearance between links 2 and 3
mi mass of link i
rGi

position of the center of mass Gi for link i

vGi
linear velocity vector of the center of mass Gi for link i

aGi
linear acceleration vector of the center of mass Gi for link i

IGi
mass moment of inertia for link i about an axis perpendicular to the plane of mechanism,
through the center of mass of the link
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Fig. 5. Largest Lyapunov exponent computed for a set of values of the nominal angular velocity o10 and for the

various clearances: (a) c ¼ 0:5 mm; (b) c ¼ 1 mm; (c) c ¼ 1:5 mm:
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yi angle between link i and the horizontal axis Ox

oi angular velocity of link i
ai angular acceleration of link i
Ti kinetic energy for link i

mk coefficient of kinetic friction
ms coefficient of static friction
e coefficient of restitution
g gravitational acceleration
Gi gravitational force acting on link i
Mm torque of the motor acting on link 1
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